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PROBLEM METHOD RESULTS
Impactful applications of video classification - We classity a video based on the single-frame method, i.e. by aggregating predictions across single Dataset: 3-5 second videos of RAVDESS dataset
- Require access to personal videos frames/images. with 120-150 frames, containing 7 emotions
- Invasive in nature - security risk R = [P11,P51,-Pes] Implementation: in MP-SPDZ [1] with mixed cir-
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e ) frames selected at T1d¢ 77 /7 4 :
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| Scen.arlo 3: Cloud services have access to private data ) St comrateetny PaSSive 2PC 302. 2 4 37 4. 28
PrObab}e S cenarlf)s Step 2: Private frame 3PC 8.69 0.28
- Alice sends video to Bob classification 2PC 6576.27 5492.38
- Privacy leak : Misuse of video L = Argmax([ (p11+P12+--+P17),(PcitP ot +P7) 1) € . _ — Active | 3PC 77 61 799
'. Resource limitation Step 3: Secure label aggregation ‘- B emztlZI-’ll:S/C aSSh / .tf .S' havi . 4PC 11.67 0.57
- Alice classifies video herselt Py = probabiiity of the J” image aving emotion | Results show avg time to privately detect emo-
- Privacy leak : Bob’s proprietary model = Indexof the class label of the video tion computed over a set of 10 videos with 7-10
- Privacy leak : Bob’s private training data | | - We use a field of cryptology — Secure Multiparty Computation (MPC) — that allows two or more | | frames. Avg communication measured per party.
- BEvasion atfcac.ks | servers to jointly compute a spec.ifie.d output (the §1ass label of .the video). from their pri.vate information | | Accura cy of 56.8% on a held-out test set in line
- Resource limitation (the model and the video) in a distributed way, without revealing the private information to each other. with state-of-the-art results.
- Alice and Bob outsource computation to - Overview of steps to classify a video while preserving privacy:
cloud based infrastructure A loud credits donated by Mi .
_ No resource limitation 1. Alice preprocesses the video on her end and generates a 4D tensor. Bob pretrains a 2D-CNN with 4Ure cloud credits donhated by VIET0S0
- Privacy still a concern 1.5 million parameters to classity ‘frames’(images). Bob also generates the frame selection matrix
with one-hot encoded entries of the frame numbers in the video he wants to select. CONCLUSION
Existing Solutions 2. Alice secret shares her video as | A]. Bob secret shares his model as [ M| and frame selection matrix : | .
- No formal guarantee of privacy as [B]. In this, ||z]] represents the secret shares of private data (“secret”) x. 1. FlrSt .baselme fer.ld-t.o—enc.i privacy preserv-
- Require special secure hardware 3. The computations are carried out as per the privacy-preserving video classification pipeline [2] ing video classification pipeline.
shown below. 2. Feasible privacy preserving video classifica-
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owner remains unaware which frames from

1. Use of machine learning for intelligent
the video were selected for classification by

frame selection.

2. Develop MPC protocols for state-of-the-art
techniques in video classification in-the-
clear.

- We evaluate our approach for detecting emotions of a person in a video - Preventing exposing emo-
tions of a person, most private to oneself, and preventing compromising the security of video classifica-
tion parameters.

the model owner.

. An MPC protocol for privacy-preserving
aggregation of the labels inferred for the in-
dividual frames.

. An evaluation of our secure video classi-
fication pipeline in an application for hu-
man emotion detection from video on the
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