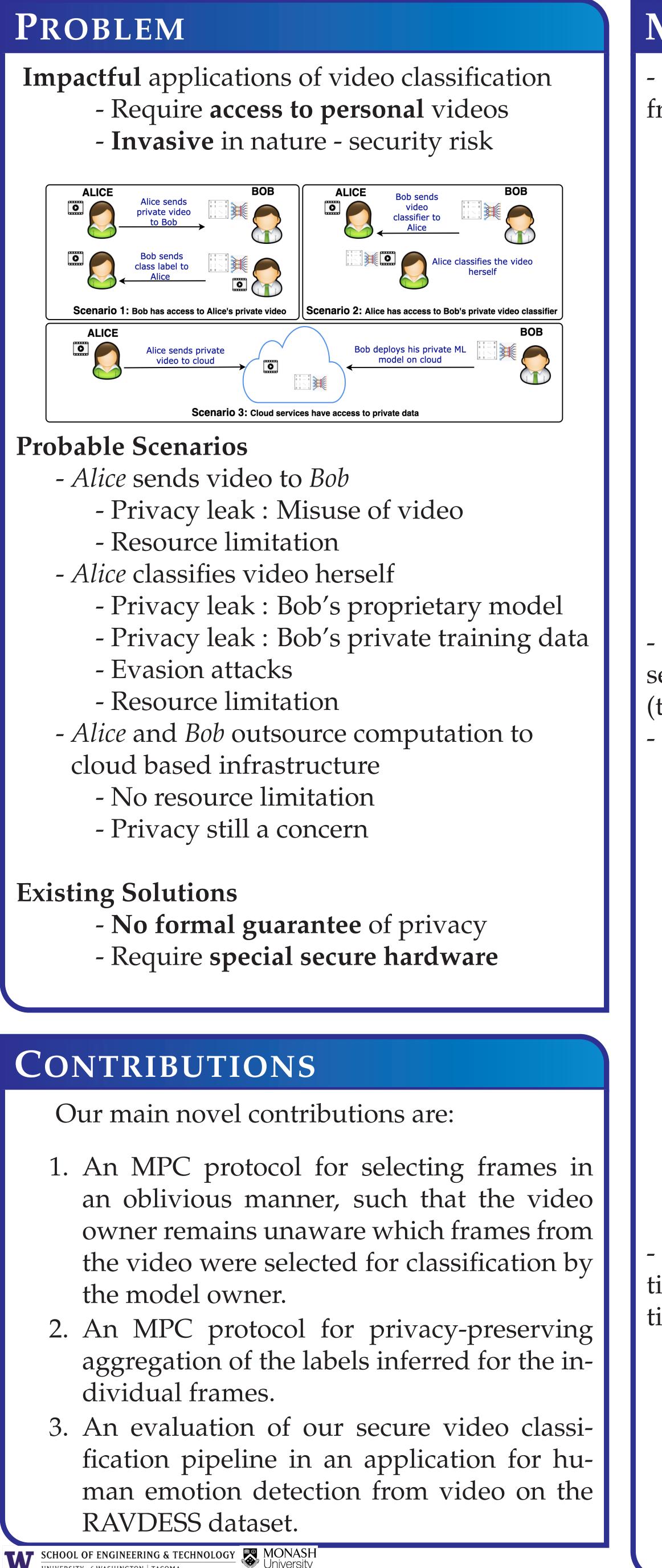
Privacy-Preserving Video Classification with Convolutional Neural Networks

¹School of Engineering and Technology, University of Washington Tacoma ²Faculty of Information Technology, Monash University

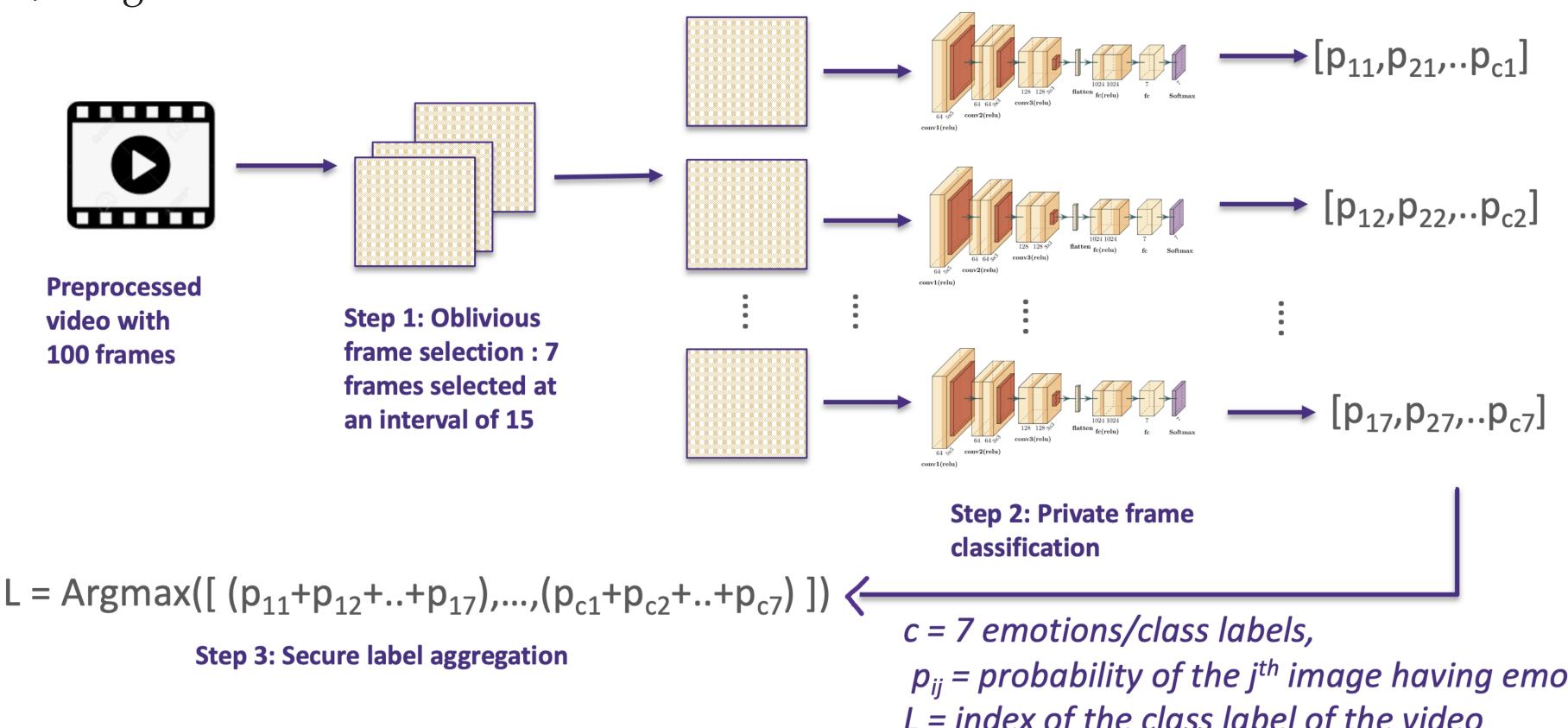


Sikha Pentyala¹, Rafael Dowsley², Martine De Cock¹

sikha@uw.edu, rafael@dowsley.net, mdecock@uw.edu

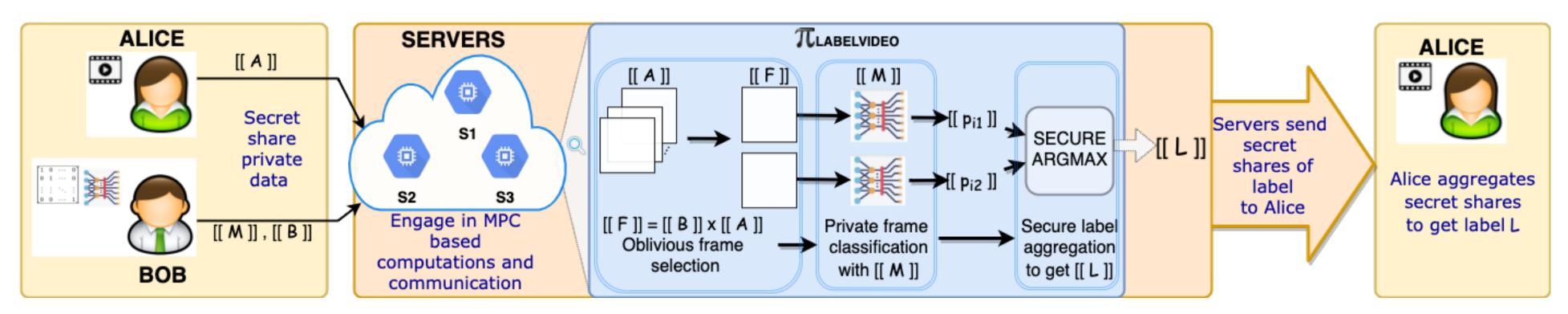
METHOD

- We classify a video based on the single-frame method, i.e. by aggregating predictions across single frames/images.



- We use a field of cryptology - Secure Multiparty Computation (MPC) - that allows two or more servers to jointly compute a specified output (the class label of the video) from their private information (the model and the video) in a distributed way, without revealing the private information to each other. - Overview of steps to classify a video while preserving privacy:

- 1. *Alice* preprocesses the video on her end and generates a 4D tensor. *Bob* pretrains a 2D-CNN with 1.5 million parameters to classify 'frames' (images). *Bob* also generates the frame selection matrix with one-hot encoded entries of the frame numbers in the video he wants to select.
- 2. Alice secret shares her video as [A]. Bob secret shares his model as [M] and frame selection matrix as $\llbracket B \rrbracket$. In this, $\llbracket x \rrbracket$ represents the secret shares of private data ("secret") x.
- 3. The computations are carried out as per the privacy-preserving video classification pipeline [2] shown below.



- We evaluate our approach for detecting emotions of a person in a video - Preventing exposing emotions of a person, most private to oneself, and preventing compromising the security of video classification parameters.

The servers compute over data that they can not see.

p_{ii} = *probability of the j*th *image having emotion i* L = index of the class label of the video

RESULTS

with 16 threads.

Passi

Activ

Results show avg time to privately detect emotion computed over a set of 10 videos with 7-10 frames. Avg communication measured per party. Accuracy of 56.8% on a held-out test set in line with state-of-the-art results.

CONCLUSION

ing video classification pipeline. 2. Feasible privacy preserving video classification with **state-of-the-art accuracy** for emotion detection in a RAVDESS video with **no** privacy leakage (mathematically provable!) and no special hardware.

FUTURE DIRECTIONS

- - clear.

REFERENCES

Dataset: 3-5 second videos of RAVDESS dataset with 120-150 frames, containing 7 emotions

Implementation: in MP-SPDZ [1] with mixed circuits and computations over integers modulo 64

Evaluation: Evaluated on F32s V2 Azure virtual machine - 32 cores, 64 GB RAM, and network bandwidth of upto 14 Gb/s. Evaluated the pipeline for different security settings.

		Time (sec)	Comm (GB)
ive	2PC	302.24	374.28
	3PC	8.69	0.28
ve	2PC	6576.27	5492.38
	3PC	27.61	2.29
	4PC	11.67	0.57

Azure cloud credits donated by Microsoft

1. First baseline end-to-end privacy preserv-

1. Use of machine learning for intelligent frame selection.

2. Develop MPC protocols for state-of-the-art techniques in video classification in-the-

Keller, M. MP-SPDZ: A Versatile Framework for Multi-Party Computation

Pentyala, S., De Cock, M., Dowsley, R. Privacy-Preserving Video Classification with CNNs, ICML2021